Interfacial and Bending Properties by Adding HNTs on the Aramid/Basalt Reinforced Epoxy-Based Hybrid Composites
نویسندگان
چکیده
Hybrid fiber reinforced composites can be controlled by price, weight and various mechanical properties depending on fiber ratio and lamination method. Despite these excellent hybrid properties, there is a disadvantage that inter-laminar fracture due to external impact, which is the biggest weakness of fiber reinforced composite materials, is weak. The test specimens were prepared by using a vacuum bag method, which is manufactured by using an autoclave device. The pre-preg is manufactured in the form of a B-stage. In the process of fabricating the nanoparticle prepreg, the homogeneizer using an ultrasonic wave was used to disperse the epoxy subject without the curing agent into nanoparticles. The dispersion of the nanoparticles was dispersed by the weight of the epoxy resin. This is to take into account the cohesion of HNT and to understand the range of cohesion of HNT in a matrix with viscosity and its phenomenon. According to the Comparison of the interlayer interfacial properties and mechanical properties of Aramid / Basalt fiber hybrid composites by HNT addition, the fracture toughness, ILSS and bending strength of specimens with HNT content of more than a certain level were decreased because of the aggregation of HNT.
منابع مشابه
INTRAPLY HYBRID COMPOSITES BASED ON BASALT AND NYLON WOVEN FABRICS: TENSILE AND COMPRESSIVE PROPERTIES
In this study, the tensile and compressive behaviors of pure and hybrid composite laminates reinforced by basalt–nylon bi-woven intra-ply fabrics were experimentally investigated. Epoxy resin was used as the matrix material. The purpose of using this hybrid composite is to obtain superior characteristics by using the good strength property of basalt fiber with the excellent toughness of ny...
متن کاملCreep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites
The creep behavior of basalt fiber reinforced epoxy (BFRE) and glass fiber reinforced epoxy (GFRE) composites was studied through tensile testing at high temperature. To study the effect of reinforcing epoxy, the micro glass powder (MGP) was added at various volume percentage into the epoxy resin in BFRE composites. The initial strain for all the specimens were evaluated and compared with each ...
متن کاملAn experimental investigation of novel hybrid epoxy/glass fibers nanocomposite reinforced with nanoclay with enhanced properties for low velocity impact test
The application of nanoparticles in order to enhance the composites properties has been recently attracted many researchers' attentions. To increase the mechanical and physical properties of the composites, the nanoparticles have no significant effect on the weight and nanostructure of composites. One of the well-known nanoparticles is the Nanoclay (NC) that have been widely used in industries ...
متن کاملCompression Analysis of Hollow Cylinder Basalt Continuous Filament Epoxy Composite Filled with Shape Memory Wire
This paper presents an experimental investigation into the compression behavior of shape memory alloy hybrid composites (SMAHC) subjected to quasi-static loading taking into account of rotation effects of shape memory wire in basalt continuous filament (BCF) direct roving epoxy composite. Two types of specimen prepared, the BCF direct roving reinforced epoxy composite filled with shape memory w...
متن کاملDynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach
The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...
متن کامل